已知平行四边形ABCD,从平面ABCD外一点引向量
,
(1)求证:四点共面;
(2)平面ABCD平面EFGH.
已知椭圆的两个焦点分别为离心率e=
(1)求椭圆的方程。(2)若CD为过左焦点
的弦,求
的周长
求双曲线的实半轴长,虚半轴长,焦点坐标,离心率,渐近线方程。
已知函数
(1)求函数的极值点;
(2)若直线过点(0,—1),并且与曲线
相切,求直线
的方程;
(3)设函数,其中
,求函数
在
上的最小值.
(其中e为自然对数的底数)
已知椭圆>b>
的离心率为
且椭圆的一个焦点与抛物线
的焦点重合,斜率为
的直线
过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点M(0,m).
(1)求椭圆的标准方程;
(2)求m的取值范围;
(3)试用m表示△MPQ的面积S,并求面积S的最大值.