(本小题满分12分)某创业投资公司拟投资开发某种新能源产品,估计能获得投资收益的范围是(单位:万元).现准备制定一个对科研课题组的奖励方案:奖金
(单位:万元)随投资收益
(单位:万元)的增加而增加,且奖金不超过
万元,同时奖金不超过投资收益的20%.
(Ⅰ)若建立函数模型制定奖励方案,请你根据题意,写出奖励模型函数应满足的条件;
(Ⅱ)现有两个奖励函数模型:;
.试分析这两个函数模型是否符合公司要求.
(本小题满分12分)如图,在四棱锥中,底面
是正方形,
底面
,
, 点
是
的中点,
,且交
于点
.
(Ⅰ)求证:平面
;
(Ⅱ)求证:平面⊥平面
;
(Ⅲ)求二面角的余弦值.
(本小题满分12分)已知等比数列满足:
,且
是
的等差中项.
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列{an}是单调递增的,令,
,求使
成立的正整数
的最小值.
(本小题满分12分)
已知向量,设函数
.
(Ⅰ)求在区间
上的零点;
(Ⅱ)在△中,角
的对边分别是
,且满足
,求
的取值范围.
(本小题满分12分)已知圆,直线
(1)求证:对,直线
与圆
总有两个不同的交点A、B;
(2)求弦AB的中点M的轨迹方程,并说明其轨迹是什么曲线;
(3)若定点P(1,1)满足,求直线
的方程。