游客
题文

已知椭圆的焦点坐标为(-1,0),(1,0),过垂直于长轴的直线交椭圆于P、Q两点,且|PQ|=3,

(1)求椭圆的方程;
(2)过的直线l与椭圆交于不同的两点M、N,则△MN的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

(本题12分)如图,在横放得四棱锥E-ABCD中,底面ABCD是正方形,∠DAE=90°,且△ABE是等腰直角三角形,其中∠BAE=90°,连接AC、BD交于点O.

(1)求证:BD⊥平面AEC;
(2)若二面角A-BD-E的大小为60°,且直线EC与平面ABCD所成的角为,求.

(本题12分)设△ABC的内角A、B、C所对的边记作,且.
(1)当时,求角B的大小及的值;
(2)若△ABC的面积为3,试求边的大小.

(本题12分)某商业集团对所属的200家连锁店进行评估,并依据得分(最低60分,最高100分,可以是小数)将其分别评定为A、B、C、D四个等级,评估标准如下表:

评估得分
[60,70)
[70,80)
[80,90)
[90,100)
评定类型
D
C
B
A


现将各连锁店的评估分数进行统计分析,并将其画成频率分布直方图如下.

(1)请补全频率分布直方图(画出[70,80)那组对应的小长方形并标上对应高度)
(2)现欲用分层抽样的方法从这200家连锁店中抽取40家作为代表进行座谈会,试问其中A、D类连锁店分别应抽取多少家?
(3)试根据频率分布直方图估计这200家连锁店评估得分的中位数(结果保留一位小数).

(本小题满分13分)已知函数
(Ⅰ)讨论函数的单调性;
(Ⅱ)设.如果对任意,求的取值范围.

(本小题满分13分)已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足(其中为坐标原点),求整数的最大值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号