(本小题满分12分)私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:
年龄(岁) |
[15,25) |
[25,35) |
[35,45) |
[45,55) |
[55,65) |
[65,75] |
频数 |
5 |
10 |
15 |
10 |
5 |
5 |
赞成人数 |
4 |
6 |
9 |
6 |
3 |
4 |
(1)完成被调查人员的频率分布直方图;
(2)若从年龄在[15,25),[25,35)的被调查者中各随机选取2人进行追踪调查,求恰有2人不赞成的概率;
(3)在(2)的条件下,再记选中的4人中不赞成“车辆限行”的人数为,求随机变量
的分布列和数学期望.
已知直线为函数
的图像,曲线C为二次函数
的图像,直线
与曲线C交于不同两点A,B
(I)当时,求弦AB的长;
(II)求线段AB中点的轨迹方程;
(III)试利用抛物线的定义证明:曲线C为抛物线.
已知椭圆的左焦点为
,离心率为
,点M在椭圆上且位于第一象限,直线FM被圆
截得的线段的长为c,
.
(I)求直线FM的斜率;
(II)求椭圆的方程;
(III)设椭圆上动点P在x轴上方,若直线FP的斜率大于,求直线OP(O为原点)的斜率的取值范围.
设椭圆E的方程为,点O为坐标原点,点A的坐标为
,点B的坐标为
,点M在线段AB上,满足
,直线OM的斜率为
.
(I)求E的离心率e;
(II)设点C的坐标为,N为线段AC的中点,点N关于直线AB的对称点的纵坐标为
,求E的方程.
在平面直角坐标系xOy中,椭圆C的参数方程(φ为参数),直线
的参数方程
(t为参数) .
(I)求C与的普通方程;
(II)求过C的右焦点,且平行的直线方程.
已知直线经过点
,且倾斜角为
,圆M以
为圆心,过极点.
(I)求与M的极坐标方程;
(II)判断与M的位置关系.