(本小题满分16分)已知数列、
满足
,
,其中
,则称
为
的“生成数列”.
(1)若数列的“生成数列”是
,求
;
(2)若为偶数,且
的“生成数列”是
,证明:
的“生成数列”是
;
(3)若为奇数,且
的“生成数列”是
,
的“生成数列”是
, ,依次将数列
,
,
, 的第
项取出,构成数列
.探究:数列
是否为等比数列,并说明理由.
已知函数
(1)若,且
时,求:函数
的值;
(2)若时,求:函数
的最大值与最小值;
(3)用“五点法”画出函数在
上的图象.
如图,平面内有三个向量:、
、
,其中
与
的夹角为
,
与
的夹角为
,
,并且
求:的值.
已知=2,求:
(1)的值;(2)
的值.
(本小题满分14分)
已知函数的图象在
上连续不断,定义:
,
.
其中,表示函数
在
上的最小值,
表示函数
在
上的最大值.若存在最小正整数
,使得
对任意的
成立,则称函数
为
上的“
阶
收缩函数”.
(Ⅰ)若,
,试写出
,
的表达式;
(Ⅱ)已知函数,
,试判断
是否为
上的“
阶收缩函数”,如果是,求出对应的
;如果不是,请说明理由;
(Ⅲ)已知,函数
是
上的2阶收缩函数,求
的取值范围.
(本小题满分13分)
已知椭圆和抛物线
有公共焦点F(1,0),
的中心和
的顶点都在坐标原点,过点M(4,0)的直线
与抛物线
分别相交于A,B两点.
(Ⅰ)写出抛物线的标准方程;
(Ⅱ)若,求直线
的方程;
(Ⅲ)若坐标原点关于直线
的对称点
在抛物线
上,直线
与椭圆
有公共点,求椭圆
的长轴长的最小值.