在高二年级中的8个班,组织一个12个人的年级学生分会,每班要求至少1人,名额分配方案有多少种?
已知抛物线
上有两点
(1)当抛物线的准线方程为
时,作正方形ABCD使得边CD直线方程为
,求正方形
的边长;
(2)抛物线上一定点Px0,,y0)(y0>0),当PA与PB的斜率存在且倾斜角互补时,求证直线AB的斜率是非零常数.
如图所示,已知圆O1与圆O2外切,它们的半径分别为4、2,圆C与圆O1、圆O2外切.
(1)建立适当的坐标系,求圆C的圆心的轨迹方程;
(2)在(1)的坐标系中,若圆C的半径为3,求圆C的方程.
已知三角形的三个顶点坐标分别为:点A(0,1)、B(4,-1)、C(2,5)
(1)若经过点A的直线l与点B和点C的距离相等,求直线l的方程;
(2)若点
是
外接圆上的动点,求
的取值范围.
中心在原点,焦点在坐标轴上的一个椭圆与一双曲线有共同的焦点F1,F2,且
,椭圆的长半轴比双曲线的半实轴长
,离心率之比为2:3。求这两条曲线的方程。
已知中心在原点,焦点在
轴的椭圆过点
,且焦距为2,过点
分别作斜率为
的椭圆的动弦
,设
分别为线段
的中点.
(1)求椭圆的标准方程;
(2)若
,求证:直线
恒过定点,并求出定点坐标.