(本小题满分12分).一对父子参加一个亲子摸奖游戏,其规则如下:父亲在装有红色、白色球各两个的甲袋子里随机取两个球,儿子在装有红色、白色、黑色球各一个的乙袋子里随机取一个球,父子俩取球相互独立,两人各摸球一次合在一起称为一次摸奖,他们取出的三个球的颜色情况与他们获得的积分对应如下表:
所取球的情况 |
三个球均为红色 |
三个球均不同色 |
恰有两球为红色 |
其他情况 |
所获得的积分 |
180 |
90 |
60 |
0 |
(Ⅰ)求一次摸奖中,所取的三个球中恰有两个是红球的概率;
(Ⅱ)设一次摸奖中,他们所获得的积分为X,求X的分布列及均值(数学期望)E(X);
(Ⅲ)按照以上规则重复摸奖三次,求至少有两次获得积分为60的概率.
在平面直角坐标系中,以坐标原点 为极点, 轴的正半轴为极轴建立极坐标系。已知直线 上两点 的极坐标分别为(2,0)( ),圆 的参数方程
(1)设 为线段 的中点,求直线 的平面直角坐标方程
(2)判断直线 与圆 的位置关系
已知函数
,
,且
的解集为
.
(Ⅰ)求
的值;
(Ⅱ)若
,且
,求证:
.
设曲线 在矩阵 对应的变换作用下得到的曲线为 .
(Ⅰ)求实数
的值
(Ⅱ)求
的逆矩阵
已知函数
.
(Ⅰ)若曲线
在点
处的切线平行于
轴,求函数
的单调区间;
(Ⅱ)试确定
的取值范围,使得曲线
上存在唯一的点
,曲线在该点处的切线与曲线只有一个公共点
.
如图,椭圆
:
的左焦点为
,右焦点为
,离心率
。过
的直线交椭圆于
两点,且
的周长为8
(Ⅰ)求椭圆
的方程。
(Ⅱ)设动直线
:
与椭圆
有且只有一个公共点
,且与直线
相较于点
。试探究:在坐标平面内是否存在定点
,使得以
为直径的圆恒过点
?若存在,求出点
的坐标;若不存在,说明理由