如图,在正四棱台中,
,
,
,
、
分别是
、
的中点.
(Ⅰ)求证:平面∥平面
;
(Ⅱ)求二面角的余弦值的大小.
注:底面为正方形,从顶点向底面作垂线,垂足是底面中心,这样的四棱锥叫做正四棱锥.用一个平行于正四棱锥底面的平面去截该棱锥,底面与截面之间的部分叫做正四棱台.
如图,在直角坐标系xOy中,锐角△ABC内接于圆已知BC平行于x轴,AB所在直线方程为
,记角A,B,C所对的边分别是a,b,c.
(1)若的值;
(2)若的值.
已知向量(
),
,且
的周期为
.
(1)求f()的值;
(2)写出f(x)在上的单调递增区间.
设函数其中
,曲线
在点
处的切线方程为
.
(I)确定的值;
(II)设曲线在点
处的切线都过点(0,2).证明:当
时,
;
(III)若过点(0,2)可作曲线的三条不同切线,求
的取值范围.
设不等式组所表示的平面区域为Dn,记Dn内 的整点个数为an(n∈N*)(整点即横坐标和纵坐标均为整数的点).
(1) 求证:数列{an}的通项公式是an=3n(n∈N*).
(2) 记数列{an}的前n项和为Sn,且Tn=.若对于一切的正整数n,总有Tn≤m,求实数m的取值范围.
提高过江大桥的车辆通行能力可改善整个城市的交通状况。在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数。当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当时,车流速度v是车流密度x的一次函数.
(Ⅰ)当时,求函数
的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)
可以达到最大,并求出最大值(精确到1辆/小时).