游客
题文

道路交通安全法中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q<80时,为酒后驾车;当Q≥80时,为醉酒驾车.某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了200辆机动车驾驶员的血酒含量,其中查处酒后驾车的有6人,查处醉酒驾车的有2人,依据上述材料回答下列问题:
(Ⅰ)分别写出违法驾车发生的频率和醉酒驾车占违法驾车总数的百分数;
(Ⅱ)从违法驾车的8人中抽取2人,求取到醉酒驾车人数的分布列和期望,并指出所求期望的实际意义;
(Ⅲ)饮酒后违法驾驶机动车极易发生交通事故,假设酒后驾车和醉酒驾车发生交通事故的概率分别是0.1和0.25,且每位驾驶员是否发生交通事故是相互独立的.依此计算被查处的8名驾驶员中至少有一人发生交通事故的概率.(精确到0.01)并针对你的计算结果对驾驶员发出一句话的倡议.

科目 数学   题型 解答题   难度 中等
知识点: 随机思想的发展
登录免费查看答案和解析
相关试题

选修:不等式选讲

(Ⅰ)求函数的定义域;
(Ⅱ)若存在实数满足,试求实数的取值范围.

选修:坐标系与参数方程
在平面直角坐标系中,直线经过点,其倾斜角是,以原点为极点,以轴的非负半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系.设曲线的极坐标方程是
(Ⅰ)若直线和曲线有公共点,求倾斜角的取值范围;
(Ⅱ)设为曲线任意一点,求的取值范围.

选修:几何证明选讲
如图,过点作圆的割线与切线为切点,连接的平分线与分别交于点,其中

(Ⅰ)求证:
(Ⅱ)求的大小.

,其中
(Ⅰ)当时,求函数在区间上的最大值;
(Ⅱ)当时,若恒成立,求的取值范围.

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.是椭圆的右顶点与上顶点,直线与椭圆相交于两点.

(Ⅰ)求椭圆的方程;
(Ⅱ)当四边形面积取最大值时,求的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号