道路交通安全法中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q<80时,为酒后驾车;当Q≥80时,为醉酒驾车.某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了200辆机动车驾驶员的血酒含量,其中查处酒后驾车的有6人,查处醉酒驾车的有2人,依据上述材料回答下列问题:
(Ⅰ)分别写出违法驾车发生的频率和醉酒驾车占违法驾车总数的百分数;
(Ⅱ)从违法驾车的8人中抽取2人,求取到醉酒驾车人数的分布列和期望,并指出所求期望的实际意义;
(Ⅲ)饮酒后违法驾驶机动车极易发生交通事故,假设酒后驾车和醉酒驾车发生交通事故的概率分别是0.1和0.25,且每位驾驶员是否发生交通事故是相互独立的.依此计算被查处的8名驾驶员中至少有一人发生交通事故的概率.(精确到0.01)并针对你的计算结果对驾驶员发出一句话的倡议.
选修:不等式选讲
设.
(Ⅰ)求函数的定义域;
(Ⅱ)若存在实数满足
,试求实数
的取值范围.
选修:坐标系与参数方程
在平面直角坐标系中,直线
经过点
,其倾斜角是
,以原点
为极点,以
轴的非负半轴为极轴,与直角坐标系
取相同的长度单位,建立极坐标系.设曲线
的极坐标方程是
.
(Ⅰ)若直线和曲线
有公共点,求倾斜角
的取值范围;
(Ⅱ)设为曲线
任意一点,求
的取值范围.
选修:几何证明选讲
如图,过点作圆
的割线
与切线
,
为切点,连接
,
的平分线与
分别交于点
,其中
.
(Ⅰ)求证:;
(Ⅱ)求的大小.
若,其中
.
(Ⅰ)当时,求函数
在区间
上的最大值;
(Ⅱ)当时,若
恒成立,求
的取值范围.
已知椭圆的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
是椭圆
的右顶点与上顶点,直线
与椭圆相交于
两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)当四边形面积取最大值时,求
的值.