(本小题满分12分)
如图,在三棱锥中,
平面
,
为
的中点,
分别为线段
上的动点,且
。
(1)求证:面
;
(2)若是
的中点,
是线段
靠近
的一个三等分点,求二面角
的余弦值。
已知函数,若存在
使得
恒成立,则称
是
的
一个“下界函数” .
(I)如果函数(t为实数)为
的一个“下界函数”,
求t的取值范围;
(II)设函数,试问函数
是否存在零点,若存在,求出零点个数;
若不存在,请说明理由.
已知几何体的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.
(Ⅰ)求此几何体的体积;
(Ⅱ)求异面直线与
所成角的余弦值;
(Ⅲ)探究在上是否存在点Q,使得
,并说明理由.
设函数.
(Ⅰ)写出函数的最小正周期及单调递减区间;
(Ⅱ)当时,函数
的最大值与最小值的和为
,求
的解析式;
(Ⅲ)将满足(Ⅱ)的函数的图像向右平移
个单位,纵坐标不变横坐标变为原来的2
倍,再向下平移,得到函数
,求
图像与
轴的正半轴、直线
所围成图形的
面积.
为了调查胃病是否与生活规律有关,调查某地540名40岁以上的人得结果如下:
患胃病 |
未患胃病 |
合计 |
|
生活不规律 |
60 |
260 |
320 |
生活有规律 |
20 |
200 |
220 |
合计 |
80 |
460 |
540 |
根据以上数据回答40岁以上的人患胃病与生活规律有关吗?
某市电信部门规定:拔打市内电话时,如果通话时间不超过3分钟,则收取通话费0.2元,如果通话时间超过3分钟,则超过部分以每分钟0.1元收取通话费(通话时间以分钟计,不足1分钟时按1分钟计),试设计一个计算通话费的算法。要求写出算法,画出程序框图,编写程序。