已知函数f(x)= sinx×cosx-cos2x+
.
(Ⅰ)化简函数f(x),并用“五点法”画出函数在长度为一个周期的闭区间上的简图(先在所给的表格中填上所需的数值,再画图);
(Ⅱ)当时,求函数
的最大值和最小值及相应的
的值.
如图,是⊙
的直径,
是⊙
的切线,
与
的延长线交于点
,
为切点.若
,
,
的平分线
与
和⊙
分别交于点
、
,求
的值.
如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.
已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2-14x+mn=0的两个根.
(1)证明:C,B,D,E四点共圆;
(2)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.
如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,EC=ED.
(1)证明:CD∥AB;
(2)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.
如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点.若CF∥AB,证明:
(1)CD=BC;
(2)△BCD∽△GBD.
如图,AB是圆O的直径,D,E为圆O上位于AB异侧的两点,连结BD并延长至点C,使BD=DC,连结AC,AE,DE.
求证:∠E=∠C.