某渔业公司今年初用98万元购进一艘渔船用于捕捞,第一年需各种费用12万元,从第二年开始包括维修费在内,每年所需费用均比上一年增加4万元,该船每年捕捞的总收入为50万元.
(1)该船捕捞几年开始盈利?(即总收入减去成本及所有费用之差为正值)
(2)该船捕捞若干年后,处理方案有两种:
①当年平均盈利达到最大值时,以26万元的价格卖出;
②当盈利总额达到最大值时,以8万元的价格卖出.问哪一种方案较为合算,请说明理由.
某俱乐部举行迎圣诞活动,每位会员交50元活动费,可享受20元的消费,并参加一次游戏:掷两颗正方体骰子,点数之和为12点获一等奖,奖价值为a元的奖品;点数之和为11或10点获二等奖,奖价值为100元的奖品;点数之和为9或8点获三等奖,奖价值为30元的奖品;点数之和小于8点的不得奖。求:
(1)同行的两位会员中一人获一等奖、一人获二等奖的概率;
(2)如该俱乐部在游戏环节不亏也不赢利,求a的值。
设,且
满足
(1)求的值.
(2)求的值.
(本小题满分14分)已知的图像在点
处的切线与直线
平行.
⑴ 求,
满足的关系式;
⑵ 若上恒成立,求
的取值范围;
⑶ 证明:(
)
已知数列中,
,
.
⑴ 求出数列的通项公式;
⑵ 设,求
的最大值。
(本小题满分14分)在平面直角坐标系中,已知点,过点
作抛物线
的切线,其切点分别为
(其中
)。
⑴ 求的值;
⑵ 若以点为圆心的圆与直线
相切,求圆的面积。