(本小题满分12分)
某校从参加高二年级期中考试的学生中随机抽取名学生,将其数学成绩(均为整数)分成六段
,
…
后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:
(1)求分数在内的频率,并补全这个频率分布直方图;
(2)根据频率分布直方图,估计本次数学成绩的平均数;
(3)用分层抽样的方法在分数段为的学生中抽取一个容量为
的样本,将该样本看成一个总体,从中任取
人,求至多有
人分数在
的概率.
在中,三个内角A,B,C所对的边分别是a,b,c,且
.
(1)求角的大小;
(2)求的取值范围.
已知数列的首项
,
是
的前
项和,且
.
(1)若记,求数列
的通项公式;
(2)记,证明:
,
.
已知数列的首项
,且
.
(1)求数列的通项公式;
(2)求数列的前
项和
.
如图,已知正方体的棱长为
.
(1)求四面体的左视图的面积;
(2)求四面体的体积.
经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量(千辆/时)与汽车的平均速度
(千米/时)之间的函数关系为
(
).
(1)在该时段内,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?
(2)若要求在该时段内车流量超过千辆/时,则汽车的平均速度应在什么范围内?