游客
题文

(本小题满分14分)
某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/时的航行速度匀速行驶,经过t小时与轮船相遇.

(Ⅰ)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(Ⅱ)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

(本小题满分10分)【选修4—1:几何证明选讲】
在直角坐标系中,以原点为极点,轴的正半轴为极轴建坐标系,已知曲线,已知过点的直线的参数方程为
为参数),直线与曲线分别交于两点。
(1)写出曲线和直线的普通方程;
(2)若成等比数列,求的值.

(本小题满分10分)【选修4—1:几何证明选讲】

如图,在正中,点分别在边上,且相交于点
(1)求证:四点共圆;
(2)若正的边长为2,求,所在圆的半径.

(本小题满分12分)已知函数为无理数,
(1)求函数在点处的切线方程;
(2)设实数,求函数上的最小值;
(3)若为正整数,且对任意恒成立,求的最大值.

(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,H是正方形AA1B1B的中心,AA1=2,C1H⊥平面AA1B1B,且C1H=.

(1)求异面直线AC与A1B1所成角的余弦值;
(2)求二面角A-A1C1-B1的正弦值;
(3)设N为棱B1C1的中点,点M在平面AA1B1B内,且MN⊥平面A1B1C1,求线段BM的长.

(本小题满分12分)
已知数列中,,前项和
(1)求数列的通项公式;
(2)设数列的前项和为,是否存在实数,使得对一切正整数都成立?若存在,求出的最小值;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号