(本题8分)已知函数.
(1)用单调性定义证明函数在
上是减函数;
(2)判断在
上的单调性(无需证明);
(3)若函数在
上的值域是
,求
的最大值和最小值.
某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米。
(1)分别用x表示y和S的函数关系式,并给出定义域;
(2)怎样设计能使S取得最大值,并求出最大值。
已知二次函数的二次项系数为
,且不等式
的解集为
.
(1)若方程有两个相等的实数根, 求
的解析式;
(2)若的最大值为正数,求
的取值范围.
已知命题p:,命题q:
. 若“p且q”为真命题,求实数m的取值范围.
(本小题满分14分)已知函数.
(Ⅰ)若曲线在
和
处的切线互相平行,求
的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,若对任意
,均存在
,使得
,求
的取值范围.
(本小题满分13分)
已知向量m=n=
.
(1)若m·n=1,求的值;
(2)记函数f(x)= m·n,在中,角A,B,C的对边分别是a,b,c,且满足
求f(A)的取值范围.