“水资源与永恒发展”是2015年联合国世界水资源日主题.近年来,某企业每年需要向自来水厂缴纳水费约4万元,为了缓解供水压力,决定安装一个可使用4年的自动污水净化设备,安装这种净水设备的成本费(单位:万元)与管线、主体装置的占地面积(单位:平方米)成正比,比例系数约为0.2.为了保证正常用水,安装后采用净水装置净水和自来水厂供水互补的用水模式.假设在此模式下,安装后该企业每年向自来水厂缴纳的水费 C(单位:万元)与安装的这种净水设备的占地面积x(单位:平方米)之间的函数关系是(x≥0,k为常数).记y为该企业安装这种净水设备的费用与该企业4年共将消耗的水费之和.
(1)试解释的实际意义,请建立y关于x的函数关系式并化简;
(2)当x为多少平方米时,y取得最小值?最小值是多少万元?
(本小题满分10分)
在△ABC中,角A、B、C对边分别是,且满足
.
(1)求角A的大小;
(2)求的最大值,并求取得最大值时角B、C的大小.
已知函数,其中
为实数.
(Ⅰ)当时,求曲线
在点
处的切线方程;
(Ⅱ)是否存在实数,使得对任意
,
恒成立?若不存在,请说明理由,若存在,求出
的值并加以证明.
(本小题满分12分)
已知定点,直线
交
轴于点
,记过点
且与直线
相切的圆的圆心为点
.
(I)求动点的轨迹
的方程;
(Ⅱ)设倾斜角为的直线
过点
,交轨迹
于两点
,交直线
于点
.若
,求
的最小值.
(本小题满分12分)
设等差数列的前
项和为
,等比数列
的前
项和为
,已知
.
(Ⅰ)求数列、
的通项公式;
(Ⅱ)求和:.
(本小题满分12分)
如图,在三棱锥中,面
面
,
是正三角形,
.
(Ⅰ)求证:;
(Ⅱ)若异面直线所成角的余弦值为
,求二面角
的大小;