“水资源与永恒发展”是2015年联合国世界水资源日主题.近年来,某企业每年需要向自来水厂缴纳水费约4万元,为了缓解供水压力,决定安装一个可使用4年的自动污水净化设备,安装这种净水设备的成本费(单位:万元)与管线、主体装置的占地面积(单位:平方米)成正比,比例系数约为0.2.为了保证正常用水,安装后采用净水装置净水和自来水厂供水互补的用水模式.假设在此模式下,安装后该企业每年向自来水厂缴纳的水费 C(单位:万元)与安装的这种净水设备的占地面积x(单位:平方米)之间的函数关系是(x≥0,k为常数).记y为该企业安装这种净水设备的费用与该企业4年共将消耗的水费之和.
(1)试解释的实际意义,请建立y关于x的函数关系式并化简;
(2)当x为多少平方米时,y取得最小值?最小值是多少万元?
(本小题满分14分)
如图所示,已知曲线交于点O、A,直线
与曲线
、
分别交于点D、B,连结OD,DA,AB.
(1)求证:曲边四边形ABOD(阴影部分:OB为抛物线弧)的面积的函数表达式为
(2)求函数在区间
上的最大值.
(本小题满分13分)
甲、乙两人各射击一次,击中目标的概率分别是和
,假设两个射击是否击中目标,相互之间没有影响;每人各次射击是否中目标相互之间也没有影响。
(1)求甲射击4次,至少有1次未击中目标的概率;
(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;
(3)假设某人连续2次未击中目标,则中止其射击。则乙恰好射击5次后被中止射击的概率是多少?
(本小题满分13分)
设函数,已知
是奇函数.
(Ⅰ)求、
的值;(Ⅱ)求
的单调区间与极值.
(本小题满分13分)
已知的展开式中第五项的系数与第三项的系数的比是10:1
(1)求展开式中各项系数的和;
(2)求展开式中含的项;
(本小题满分13分)
4位学生与2位教师并坐合影留念,针对下列各种坐法,试问:各有多少种不同的坐法?(用数字做答)
(1)教师必须坐在中间;
(2)教师不能坐在两端,但要坐在一起;
(3)教师不能坐在两端,且不能相邻.