已知点A,B的坐标分别是,
,直线AM,BM相交于点M,且直线AM的斜率与直线BM的斜率的差是-1.
(1)过点M的轨迹C的方程;
(2)过原点作两条互相垂直的直线.
分别交曲线C于点A,C和B,D,求四边形ABCD面积的最小值.
已知四棱锥P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=AB.Q是PC上的一点,且PA∥平面QBD.
⑴确定Q的位置;
⑵求二面角Q-BD-C的平面角的余弦值.
已知向量,函数
.
⑴设,x为某三角形的内角,求
时x的值;
⑵设,当函数
取最大值时,求cos2x的值.
学校餐厅每天供应500名学生用餐,每星期一有A, B两种菜可供选择。调查表明,凡是在这星期一选A菜的,下星期一会有改选B菜;而选B菜的,下星期一会有
改选A菜。用
分别表示第
个星期选A的人数和选B的人数.
⑴试用表示
,判断数列
是否成等比数列并说明理由;
⑵若第一个星期一选A种菜的有200人,那么第10个星期一选A种菜的大约有多少人?
为了解某校学生参加某项测试的情况,从该校学生中随机抽取了6位同学,这6位同学的成绩(分数)如茎叶图所示.
⑴求这6位同学成绩的平均数和标准差;
⑵从这6位同学中随机选出两位同学来分析成绩的分布情况,设为这两位同学中成绩低于平均分的人数,求
的分布列和期望.
已知点在双曲线
上,且双曲线的一条渐近线的方程是
.
(1)求双曲线的方程;
(2)若过点且斜率为
的直线
与双曲线
有两个不同交点,求实数
的取值范围;
(3)设(2)中直线与双曲线
交于
两个不同点,若以线段
为直径的圆经过坐标原点,求实数
的值.