已知点A,B的坐标分别是,
,直线AM,BM相交于点M,且直线AM的斜率与直线BM的斜率的差是-1.
(1)过点M的轨迹C的方程;
(2)过原点作两条互相垂直的直线.
分别交曲线C于点A,C和B,D,求四边形ABCD面积的最小值.
已知椭圆:
的一个顶点为
,离心率为
.直线
与椭圆
交于不同的两点M,N.
(Ⅰ)求椭圆的方程;
(Ⅱ)当△AMN得面积为时,求
的值.
等比数列的各项均为正数,且
(1)求数列的通项公式;
(2)设求数列
的前n项和.
如图,在直三棱柱中,
,
分别是棱
上的点(点
不同于点
),且
为
的中点.
求证:(1)平面平面
;
(2)直线平面
.
设函数.
(1)求f(x)的最小值,并求使f(x)取得最小值的x的集合;
(2)在△ABC中,设角A,B的对边分别为a,b,若B=2A,且,求角C的大小.
已知p:方程2x2-2mx+1=0有两个不相等的负实根;q:存在x∈R,
x2+mx+1<0.若p或q为真,p且q为假,求实数m的取值范围.