某学校假期后勤维修的一项工作是请30名木工制作200把椅子和100张课桌.已知一名工人在单位时间内可制作10把椅子或7张课桌.将这30名工人分成两组,一组制作课桌,一组制作椅子,两组同时开工.设制作课桌的工人为名.
(1)分别用含的式子表示制作200把椅子和100张课桌所需的单位时间;
(2)当为何值时,完成此项工作的时间最短?
在中,
分别是角
的对边,且
.
(1)求角的大小;
(2)若,求
的面积.
命题:实数
满足
,其中
,命题
:实数
满足
或
,且
是
的必要不充分条件,求
的取值范围.
已知椭圆:
的离心率为
,右焦点为(
,0).
(1)求椭圆的方程;
(2)若过原点作两条互相垂直的射线,与椭圆交于
,
两点,求证:点
到直线
的距离为定值.
在四棱锥中,
//
,
,
,
平面
,
.
(1)求证:平面
;
(2)求异面直线与
所成角的余弦值;
(3)设点为线段
上一点,且直线
与平面
所成角的正弦值为
,求
的值.
据市场分析,广饶县驰中集团某蔬菜加工点,当月产量在10吨至25吨时,月生产总成本(万元)可以看成月产量
(吨)的二次函数.当月产量为10吨时,月总成本为20万元;当月产量为15吨时,月总成本最低为17.5万元.
(1)写出月总成本(万元)关于月产量
(吨)的函数关系;
(2)已知该产品销售价为每吨1.6万元,那么月产量为多少时,可获最大利润;
(3)当月产量为多少吨时, 每吨平均成本最低,最低成本是多少万元?