某学校假期后勤维修的一项工作是请30名木工制作200把椅子和100张课桌.已知一名工人在单位时间内可制作10把椅子或7张课桌.将这30名工人分成两组,一组制作课桌,一组制作椅子,两组同时开工.设制作课桌的工人为名.
(1)分别用含的式子表示制作200把椅子和100张课桌所需的单位时间;
(2)当为何值时,完成此项工作的时间最短?
(本小题满分12分)
如图,在长方体中,
P在
上,且
.
1)求证:
2)求二面角的大小;
3)求点B到平面的距离.
(本小题满分12分)
在中,
为其锐角,且
与
是方程
的两个根。
1)求的值;
2)求函数在
时的最大值及取得最大值时
的取值.
(本小题满分12分)
甲乙两人进行投篮训练,甲投进的概率为,乙投进的概率为
,两人投进与否相互没有影响,现两人各投1次,求:
1)甲投进而乙未投进的概率;
2)这两人中至少有1人投进的概率.
如图,在面积为18的△ABC中,AB=5,双曲线E过点A,
|
且以B、C为焦点,已知
已知等差数列{an}的公差大于0,且a3,a5是方程x2–14x+45 =0的两根,数列{ bn}的前n项的和为Sn,且Sn=1-(Ⅰ)求数列{an},{bn}的通项公式;(Ⅱ)记cn=anbn,求证cn+1≤cn.