在中,已知
.
(1)判断的形状;
(2)设O为坐标原点,,求
.
已知函数
(Ⅰ)求
的最小正周期及最大值;
(Ⅱ)若
,且
,求
的值.
已知函数
(
为自然对数的底数)
(Ⅰ)若曲线
在点
处的切线平行于
轴,求
的值;
(Ⅱ)求函数
的极值;
(Ⅲ)当
时,若直线
与曲线
没有公共点,求
的最大值.
如图,在等腰直角
中,
,
,点
在线段
上.
(Ⅰ) 若
,求
的长;
(Ⅱ)若点
在线段
上,且
,问:当
取何值时,
的面积最小?并求出面积的最小值.
如图,抛物线
的焦点为
,准线
与
轴的交点为
.点
在抛物线
上,以
为圆心,
为半径作圆,设圆
与准线
交于不同的两点
,
.
(I)若点
的纵坐标为2,求
;
(II)若
,求圆
的半径.
某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在"25周岁以上(含25周岁)"和"25周岁以下"分为两组,再将两组工人的日平均生产件数分为5组: , , , , ,分别加以统计,得到如图所示的频率分布直方图.
(I)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名"25周岁以下组"工人的概率;
(II)规定日平均生产件数不少于80件者为"生产能手",请你根据已知条件完成列联表,并判断是否有90%的把握认为"生产能手与工人所在的年龄组有关"?
附: (注:此公式也可以写成 )
0.100 |
0.050 |
0.010 |
0.001 |
|
2.706 |
3.841 |
6.635 |
10.828 |