已知向量
(1)当时,求
的值;
(2)求在
上的值域.
正方形与梯形
所在平面互相垂直,
,
,点
在线段
上且不与
重合。
(Ⅰ)当点M是EC中点时,求证:BM//平面ADEF;
(Ⅱ)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥
的体积.
一个口袋中有红球3个,白球4个.
(Ⅰ)从中不放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,求摸2次恰好第2次中奖的概率;
(Ⅱ)每次同时摸2个,并放回,摸到的2个球中至少有1个红球则中奖,连续摸4次,求中奖次数X的数学期望E(X).
已知数列满足
,数列
满足
.
(Ⅰ)证明数列是等差数列并求数列
的通项公式;
(Ⅱ)求数列的前
项和
.
若均为正实数,并且
,求证:
以坐标原点O为极点,轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为:
,曲线C2的参数方程为:
,点N的极坐标为
.
(Ⅰ)若M是曲线C1上的动点,求M到定点N的距离的最小值;
(Ⅱ)若曲线C1与曲线C2有有两个不同交点,求正数的取值范围.