对于函数
,若在定义域内存在实数
,满足
,则称为“局部奇函数”
(1)已知二次函数
(
且
),试判断
是否为“局部奇函数”,并说明理由;
(2)若
是定义在区间
上的“局部奇函数”,求实数
的取值范围;
(3)若
为定义域为
上的“局部奇函数”,求实数
的取值范围;
设一个焦点为
,且离心率
的椭圆
上下两顶点分别为
,直线
交椭圆
于
两点,直线
与直线
交于点
.
(1)求椭圆
的方程;
(2)求证:
三点共线.
如图,在正三棱柱ABC—A1B1C1中,
.
(1)求直线
与平面
所成角的正弦值;
(2)在线段
上是否存在点
?使得二面角
的大小为60°,若存在,求出
的长;若不存在,请说明理由.
已知抛物线
的顶点在坐标原点
,对称轴为
轴,焦点为
,抛物线上一点
的横坐标为2,且
.
(1)求抛物线的方程;
(2)过点
作直线
交抛物线于
,
两点,求证:
.
已知
为直角梯形,
,
平面
,
(1)求证:
平面
;
(2)求平面
与平面
所成锐二面角的余弦值.
已知函数
.
(1)求函数
的单调区间;
(2)若
,求函数
的值域.