如图,抛物线 交x轴于 ,B两点,交y轴于点 ,顶点D的横坐标为 .
(1)求抛物线的解析式;
(2)在y轴的负半轴上是否存在点P使 ,若存在,求出点P的坐标,若不存在,请说明理由;
(3)过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作 ,垂足为F,使以M,F,E三点为顶点的三角形与△ADE相似?若存在,请求出M点的坐标,若不存在,请说明理由.
已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.
(1)如图1,若点O在边BC上,求证:AB=AC;
(2)如图2,若点O在△ABC的内部,求证:AB=AC;
(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.
在Rt△ABC中,AC=3cm,AB=5cm,四边形CFDE为矩形,其中CF、CE在两直角边上.
(1)求BC的长度.
(2)设矩形的一边CF=xcm.当矩形ECFD是3㎝2,求矩形的长和宽是多少?
将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.
(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?
(2)两个正方形的面积之和可能等于12cm2吗?若能,求出两段铁丝的长度;若不能,请说明理由.
如图,在Rt△ACB中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D.若AC=9,求AE的值.
某商场将进货价为40元的台灯以50元售出,平均每月能售出600个,调查表明,售价在50~70元的范围内,这种台灯的售价每上涨2元,其销售量就减少20个,为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?